Pure Mathematics P2 Mark scheme

Questi	on Scheme	Marks	
1(a)	$f(x) = x^4 + x^3 + 2x^2 + ax + b$		
	Attempting $f(1)$ or $f(-1)$	M1	
	$f(1) = 1 + 1 + 2 + a + b = 7$ or $4 + a + b = 7 \implies a + b = 3$	A1*	
	(as required) AG	cso	
		(2)	
(b)	Attempting $f(-2)$ or $f(2)$	M1	
	$f(-2) = 16 - 8 + 8 - 2a + b = -8 \{ \Rightarrow -2a + b = -24 \}$	A1	
	Solving both equations simultaneously to get as far as $a =$ or $b =$	dM1	
	Any one of $a = 9$ or $b = -6$	A1	
	Both $a = 9$ and $b = -6$	A1	
		(5)	
		(7marks)	
Notes:			
Alterna M1: A1:	For applying $f(1)$, setting the result equal to 7, and manipulating this correctly to g the result given on the paper as $a + b = 3$. Note that the answer is given in part (a). Ative For long division by $(x - 1)$ to give a remainder in a and b which is independent of Or {Remainder =} $b + a + 4 = 7$ leading to the correct result of $a + b = 3$ (answer given	x.	
(b) M1:	Attempting either $f(-2)$ or $f(2)$.		
	<u>correct underlined equation</u> in <i>a</i> and <i>b</i> ; e.g. $16-8+8-2a+b=-8$ or equivalent	>	
	e.g. $-2a + b = -24$.		
	An attempt to eliminate one variable from 2 linear simultaneous equations in <i>a</i> and Note that this mark is dependent upon the award of the first method mark.	<i>b</i> .	
A1:	Any one of $a = 9$ or $b = -6$.		
A1:	Both $a = 9$ and $b = -6$ and a correct solution only.		
Alterna	ntive		
M1:	For long division by $(x + 2)$ to give a remainder in <i>a</i> and <i>b</i> which is independent of	x.	
A1:	For {Remainder =} $\underline{b-2(a-8)=-8}$ { $\Rightarrow -2a+b=-24$ }.		
	Then dM1A1A1 are applied in the same way as before.		

Question	Sche	me	Marks			
2(a)	$S_{\infty} = \frac{20}{1-\frac{7}{2}}; = 160$	Use of a correct S_{∞} formula	M1			
	$b_{\infty} = \frac{1 - \frac{7}{8}}{1 - \frac{7}{8}}$,	160	A1			
			(2)			
(b)	$S_{12} = \frac{20(1 - (\frac{7}{8})^{12})}{1 - \frac{7}{8}}; = 127.77324$ $= 127.8 (1 \text{ dp})$	M1: Use of a correct S_n formula with $n = 12$ (condone missing brackets around $\frac{7}{8}$) A1: awrt 127.8	M1 A1			
			(2)			
(c)	$160 - \frac{20(1 - (\frac{7}{8})^N)}{1 - \frac{7}{8}} < 0.5$	Applies S_N (GP only) with $a = 20$, $r = \frac{7}{8}$ and "uses" 0.5 and their S_{∞} at any point in their working.	M1			
	$160\left(\frac{7}{8}\right)^{N} < (0.5) \text{ or } \left(\frac{7}{8}\right)^{N} < \left(\frac{0.5}{160}\right)$	Attempt to isolate $+160\left(\frac{7}{8}\right)^{N}$ or $\left(\frac{7}{8}\right)^{N}$	dM1			
	$N\log\left(\frac{7}{8}\right) < \log\left(\frac{0.5}{160}\right)$	Uses the law of logarithms to obtain an equation or an inequality of the form $N \log\left(\frac{7}{8}\right) < \log\left(\frac{0.5}{\text{their } S_{\infty}}\right)$ or $N > \log_{0.875}\left(\frac{0.5}{\text{their } S_{\infty}}\right)$	M1			
	$N > \frac{\log\left(\frac{0.5}{160}\right)}{\log\left(\frac{7}{8}\right)} = 43.19823$ $\Rightarrow N = 44$ cso	$N = 44 \text{ (Allow } N \ge 44 \text{ but no } N > 44$	A1 cso			
	An incorrect inequality statement at an the final mark. Some candidates do inequality is reversed in the final line o gain full marks for using =, as long as n	not realise that the direction of the of their solution. BUT it is possible to				
			(4)			
	Alternative: Trial & Improvement Method in (c):					
	Attempts $160 - S_N$ or S_N with at least one value for $N > 40$					
	Attempts $160 - S_N$ or S_N with $N = 43$ or $N = 44$					
	For evidence of examining $160 - S_N$ or S_N for both $N = 43$ and $N = 44$ with both values correct to 2 DP Eg: $160 - S_{43} = awrt \ 0.51 \ and \ 160 - S_{44} = awrt \ 0.45 \ or$ $S_{43} = awrt \ 159.49 \ and \ S_{44} = awrt \ 159.55$					
	N = 44					
	Answer of <i>N</i> = 44 only with no working scores no marks					
			(4)			
			8 marks)			

Ques	tion Scheme	Marks
3 (a	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 B1
		(2)
(b)) $\frac{1}{2} \times 0.25$, {(1+2)+2(1.251+1.494+1.741)} o.e.	B1 M1 A1ft
	= 1.4965	Al
		(4)
(c)	 Gives any valid reason including Decrease the width of the strips Use more trapezia Increase the number of strips Do not accept use more decimal places 	B1
		(1)
Notes:		(7 marks)
(a) B1: B1: (b) B1: M1: A1ft: A1:	For 1.494 For 1.741 (1.740 is B0). Wrong accuracy e.g. 1.49, 1.74 is B1B0 Need $\frac{1}{2}$ of 0.25 or 0.125 o.e. Requires first bracket to contain first plus last values and second bracket to include additional values from the three in the table. If the only mistake is to omit one val from second bracket this may be regarded as a slip and M mark can be allowed (extra repeated term forfeits the M mark however) <i>x</i> values: M0 if values used in to <i>x</i> values instead of <i>y</i> values Follows their answers to part (a) and is for {correct expression} Accept 1.4965, 1.497, or 1.50 only after correct work. (No follow through except special case below following 1.740 in table).	ue An brackets are
	Separate trapezia may be used: B1 for 0.125, M1 for $\frac{1}{2}h(a+b)$ used 3 or 4 times (A1 ft if it is all correct) e.g. 0.125(1+ 1.251) + 0.125(1.251+1.494) + 0.125(1.74) M1 A0 equivalent to missing one term in { } in main scheme.	

				Scheme		Marks
A sol	ution ba	used are	ound a tab	le of resul	ts	
ľ	1	n^2	$n^2 + 2$			
1		1	3	Odd		
2		4	6	Even		
3	3	9	11	Odd		
4	1	16	18	Even		
5	5	25	27	Odd		
6	5	36	38	Even		
					2	
When	n <i>n</i> is od	ld, n^2 is	s odd (odd	\times odd = o	ld) so $n^2 + 2$ is also odd	M1
			rs n , $n^2 + 2$ e 4 times ta		ld and so cannot be divisible by 4 n)	A1
	n <i>n</i> is ev ple of 4	ven, n^2	is even an	d a multip	le of 4, so $n^2 + 2$ cannot be a	M1
-			-		for both of the cases above plus a be divisible by 4"	A1*
						(4)
Alter	native -	(algeb	raic) proof	•		
If <i>n</i> is	s even, <i>n</i>	n=2k, s	so $\frac{n^2 + 2}{4} =$	$=\frac{\left(2k\right)^2+2}{4}$	$=\frac{4k^2+2}{4}=k^2+\frac{1}{2}$	M1
f <i>n</i> is	s odd, <i>n</i> :	= 2k + 1	, so $\frac{n^2 + 2}{4}$	$\frac{1}{4} = \frac{(2k+1)}{4}$	$\frac{k^2+2}{4} = \frac{4k^2+4k+3}{4} = k^2+k+\frac{3}{4}$	M1
For a partial explanation stating that						
• either of $k^2 + \frac{1}{2}$ or $k^2 + k + \frac{3}{4}$ are not a whole numbers.					A1	
 with some valid reason stating why this means that n² +2 is not a multiple of 4. 						
Full proof with no errors or omissions. This must include						
• The conjecture						
•			-		th even and odd numbers	A1*
•	A full by 4	explana	ation stating	g why, for	all n , $n^2 + 2$ is not divisible	
						(4)
					(1	4 mark

Question		Scheme		Marks
5(a)	$(S =)a + (a + d) + \dots + [a + (n - 1)d]$	B1: requires at least 3 terms, must include first and last terms, an adjacent term and dots!	B1	
	$(S =)[a+(n-1)d] + \dots + a$	M1: for reversing series (dots needed)	M1	
	$2S = [2a + (n-1)d] + \dots + [2a + (n-1)d]$	(n-1)d]	dM1: for adding, must have 2 <i>S</i> and be a genuine attempt. Either line is sufficient. Dependent on 1 st M1.	dM1
	2S = n[2a + (n-1)d]	(NB –Allow first 3 marks for use of <i>l</i> for last term but as given for final mark)		
	$S = \frac{n}{2} \left[2a + (n-1)d \right] \operatorname{cso}$			A1
				(4)
(b)	$600 = 200 + (N-1)20 \Longrightarrow N = \dots$		600 with a <u>correct</u> formula in an t to find <i>N</i> .	M1
	N = 21	cso		A1
				(2)
(c)	Look f	for an AF	P first:	
	$S = \frac{21}{2} (2 \times 200 + 20 \times 20) \text{ or}$ $\frac{21}{2} (200 + 600)$	their in	se of correct sum formula with teger $n = N$ or $N - 1$ from part ere $3 < N < 52$ and $a = 200$ and d	
	$S = \frac{20}{2} (2 \times 200 + 19 \times 20)$ or			M1A1
	$\frac{20}{2} (200 + 580)$ (= 8400 or 7800)	their in	se of correct sum formula with teger $n = N$ or $N - 1$ from part ere $3 < N < 52$ and $a = 200$ and d	
	Then for t		ant torms.	
			ant (CI IIIS)	
	$600 \times (52 - "N") (= 18600)$	$ M1: 60 \\ < k < 5 $	$20 \times k$ where k is an integer and 3 2	M1
		through	correct un-simplified follow n expression with their k ent with n so that 52	A1ft
	So total is 27000	cao		A1
	There are no mark	ks in (c) f	or just finding S52	
				(5)
	·		(1)	1 marks)

Questio	n S	Scheme	Marks	
6(i)	6(i) $\log_2\left(\frac{2x}{5x+4}\right) = -3$ or $\log_2\left(\frac{5x+4}{2x}\right) = 3$ or $\log_2\left(\frac{5x+4}{x}\right) = 4$		M1	
	$\left(\frac{2x}{5x+4}\right) = 2^{-3} \text{or} \left(\frac{5x+4}{2x}\right) = 2^3 \text{or} \left(\frac{5x+4}{x}\right) = 2^4$		M1	
	$16x = 5x + 4 \implies x =$ (depends on Ms and must be this equation or equiv)		dM1	
	$x = \frac{4}{11}$ or exact recurring decimal 0	.36 after correct work	A1 cso	
	Alternative			
	$\log_2(2x) +$	$3 = \log_2(5x+4)$		
	So $\log_2(2x) + \log_2(8) = \log_2(5x + 4)$	earns 2^{nd} M1 (3 replaced by $\log_2 8$)	2 nd M1	
	Then $\log_2(16x) = \log_2(5x + 4)$ earns	s 1 st M1 (addition law of logs)	1 st M1	
	Then final M1 A1 as before		dM1A1	
			(4)	
(ii)	$\log_a y + \log_a 2^3 = 5$		M1	
	$\log_a 8y = 5$	Applies product law of logarithms	dM1	
	$y = \frac{1}{8}a^5 \qquad \mathbf{cso}$	$y = \frac{1}{8}a^5 \qquad \mathbf{cso}$	A1	
		-	(3)	
			(7 marks)	
Notes:				
 (i) M1: Applying the subtraction or addition law of logarithms correctly to make two log terms into one log term . M1: For RHS of either 2⁻³, 2³, 2⁴ or log₂(¹/₈), log₂ 8 or log₂16i.e. using connection between log base 2 and 2 to a power. This may follow an error. Use of 3² is M0 dM1: Obtains correct linear equation in <i>x</i>. usually the one in the scheme and attempts <i>x</i> = A1: cso. Answer of 4/11 with no suspect log work preceding this. 				
(ii) M1: 4 dM1: (cso . Answer of 4/11 with no suspect log work preceding this. Applies power law of logarithms to replace $3\log_a 2$ by $\log_a 2^3$ or $\log_a 8$ (Should not be following M0) Uses addition law of logs to give $\log_a 2^3 y = 5$ or $\log_a 8y = 5$			

	Scheme	Marks
7(a)	Obtain $(x \pm 10)^2$ and $(y \pm 8)^2$	M1
	(10, 8)	A1
		(2)
(b)	See $(x \pm 10)^2 + (y \pm 8)^2 = 25 (= r^2)$ or $(r^2 =) "100" + "64" - 139$	M1
	r = 5*	A1
		(2)
(c)	Substitute $x = 13$ into the equation of circle and solve quadratic to give $y =$	M1
	e.g. $x = 13 \implies (13 - 10)^2 + (y - 8)^2 = 25 \implies (y - 8)^2 = 16$	A1 A1
	so $y = 4$ or 12	
	N.B. This can be attempted via a 3, 4, 5 triangle so spotting this and achieving one value for y is M1 A1. Both values scores M1 A1 A1	
		(3)
(d)	$OC = \sqrt{10^2 + 8^2} = \sqrt{164}$	M1
	Length of tangent = $\sqrt{164 - 5^2} = \sqrt{139}$	M1 A1
		(3)
		(10 marks)
	tains $(x \pm 10)^2$ and $(y \pm 8)^2$ May be implied by one correct coordinate (, 8) Answer only scores both marks.	
M1: Ob A1: (10 Alternativ		
M1: Ob A1: (10 Alternativ M1: Ob	(9, 8) Answer only scores both marks. re: Method 2: From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$	
M1: Ob A1: (10 Alternativ M1: Ob A1: Cen (b) M1: Fon All	(a) Answer only scores both marks. re: Method 2: From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ tains $(\pm 10, \pm 8)$	tify r=
M1: Ob A1: (10 Alternativ M1: Ob A1: Cen (b) M1: Fon All	(a) Answer only scores both marks. (b) Answer only scores both marks. (c) Method 2: From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ tains $(\pm 10, \pm 8)$ (c) the true is $(-g, -f)$, and so centre is $(10, 8)$. (c) a correct method leading to $r =$, or $r^2 =$ (c) w "100"+"64"-139 or an attempt at using $(x \pm 10)^2 + (y \pm 8)^2 = r^2$ form to ident (c) This is a printed answer, so a correct method must be seen.	tify <i>r</i> =
M1: Ob A1: (10 Alternativ M1: Ob A1: Cer (b) M1: For All A1*: r = Alternativ (b)	(a) Answer only scores both marks. (b) Answer only scores both marks. (c) Method 2: From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ tains $(\pm 10, \pm 8)$ (c) the true is $(-g, -f)$, and so centre is $(10, 8)$. (c) a correct method leading to $r =$, or $r^2 =$ (c) w "100"+"64"-139 or an attempt at using $(x \pm 10)^2 + (y \pm 8)^2 = r^2$ form to ident (c) This is a printed answer, so a correct method must be seen.	tify <i>r</i> =
M1: Ob A1: (10 Alternativ M1: Ob A1: Cer (b) M1: For All A1*: r = Alternativ (b) M1: Att	(a) Answer only scores both marks. re: <i>Method 2:</i> From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ tains $(\pm 10, \pm 8)$ intre is $(-g, -f)$, and so centre is $(10, 8)$. r a correct method leading to $r =$, or $r^2 =$ ow "100"+"64"-139 or an attempt at using $(x \pm 10)^2 + (y \pm 8)^2 = r^2$ form to idem 5 This is a printed answer, so a correct method must be seen. re:	tify <i>r</i> =
M1: Ob A1: (10) Alternative M1: Ob M1: Ob Alternative (b) M1: For Alternative M1: For Alternative M1: Certain of the second s	(a) Answer only scores both marks. (b) Answer only scores both marks. (c) Method 2: From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ tains $(\pm 10, \pm 8)$ (c) the transformation of the	
M1: Ob A1: (10) Alternative M1: Ob M1: Ob A1: Certon (b) M1: For All A1*: r = Alternative Alternative (b) M1: Atternative Alternative M1: Atternative Alternative Alternative M1: Atternative Alternative Alternative Alternative Request Alternative Alternative Alternative Request Request Alternative Alternative Request Request Request Alternative Request Request Request Alternative Request Request Request Request Alternative Request Request <th< td=""><td>A system only scores both marks. re: Method 2: From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ tains $(\pm 10, \pm 8)$ intre is $(-g, -f)$, and so centre is $(10, 8)$. r a correct method leading to $r =$, or $r^2 =$ ow "100"+"64"-139 or an attempt at using $(x \pm 10)^2 + (y \pm 8)^2 = r^2$ form to iden 5 This is a printed answer, so a correct method must be seen. re: empts to use $\sqrt{g^2 + f^2 - c}$ or $(r^2 =)$"100"+"64"-139 5 following a correct method.</td><td></td></th<>	A system only scores both marks. re: Method 2: From $x^2 + y^2 + 2gx + 2fy + c = 0$ centre is $(\pm g, \pm f)$ tains $(\pm 10, \pm 8)$ intre is $(-g, -f)$, and so centre is $(10, 8)$. r a correct method leading to $r =$, or $r^2 =$ ow "100"+"64"-139 or an attempt at using $(x \pm 10)^2 + (y \pm 8)^2 = r^2$ form to iden 5 This is a printed answer, so a correct method must be seen. re: empts to use $\sqrt{g^2 + f^2 - c}$ or $(r^2 =)$ "100"+"64"-139 5 following a correct method.	

Question 7 notes continued

(d)

- M1: Uses Pythagoras' Theorem to find length OC using their (10,8)
- M1: Uses Pythagoras' Theorem to find OX. Look for $\sqrt{OC^2 r^2}$
- A1: $\sqrt{139}$ only

	tion Scheme	Marks
8 (a	· ·	B1
	and in C_2 : $y = x^3 = 1^3 = 1 \implies (1, 1)$ lies on both curves.	
	$10x - x^2 - 8 = x^3$	(1)
(b)	$ 10x - x^2 - 8 = x^3 x^3 + x^2 - 10x + 8 = 0 $	B1
	$\frac{x + x - 10x + 8 - 0}{(x - 1)(x^2 + 2x - 8) = 0}$	M1 A1
	$\frac{(x-1)(x+2x-3)=0}{(x-1)(x+4)(x-2)=0} \qquad x=2$	MI AI MI AI
	$(x - 1)(x + 1)(x - 2) = 0 \qquad x - 2 \qquad (2, 8)$	A1
		(6)
(c)	$\int \{ (10x - x^2 - 8) - x^3 \} dx$	M1
	$=5x^2 - \frac{x^3}{3} - 8x - \frac{x^4}{4}$	M1 A1
	Using limits 2 and 1: $\left(20 - \frac{8}{3} - 16 - 4\right) - \left(5 - \frac{1}{3} - 8 - \frac{1}{4}\right)$	M1
	$=\frac{11}{12}$	A1
		(5)
Notes:		(12 marks)
(a) B1:		
(a) B1: (b) B1: M1:	Substitutes $x =$ nto both $y = 10x - x^2 - 8$ and $y = x^3$ AND achieves $y = 1$ in both. Sets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ Divides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method in division or inspection.	12 marks)
(a) B1: (b) B1: M1: A1:	Substitutes $x =$ nto both $y = 10x - x^2 - 8$ and $y = x^3$ AND achieves $y = 1$ in both. Sets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ Divides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method	12 marks)
(a) B1: (b) B1: M1: A1: A1: A1:	Substitutes $x =$ nto both $y = 10x - x^2 - 8$ and $y = x^3$ AND achieves $y = 1$ in both. Sets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ Divides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method in division or inspection. Correct quadratic factor $(x^2 + 2x - 8)$ For factorising of their quadratic factor. Achieves $x = 2$	12 marks)
(a) B1: (b) B1: M1: A1: A1: A1: A1:	Substitutes $x =$ nto both $y = 10x - x^2 - 8$ and $y = x^3$ AND achieves $y = 1$ in both. Sets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ Divides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method is division or inspection. Correct quadratic factor $(x^2 + 2x - 8)$ For factorising of their quadratic factor.	12 marks)
(a) B1: (b) B1: M1: A1: A1: A1:	Substitutes $x =$ nto both $y = 10x - x^2 - 8$ and $y = x^3$ AND achieves $y = 1$ in both. Sets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ Divides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method in division or inspection. Correct quadratic factor $(x^2 + 2x - 8)$ For factorising of their quadratic factor. Achieves $x = 2$	12 marks)
(a) B1: (b) B1: M1: A1: A1: A1: (c)	Substitutes $x =$ nto both $y = 10x - x^2 - 8$ and $y = x^3$ AND achieves $y = 1$ in both. Sets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ Divides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method in division or inspection. Correct quadratic factor $(x^2 + 2x - 8)$ For factorising of their quadratic factor. Achieves $x = 2$	12 marks)
(a) B1: (b) B1: M1: A1: A1: A1: A1: A1:	Substitutes $x =$ nto both $y = 10x - x^2 - 8$ and $y = x^3$ AND achieves $y = 1$ in both. Sets equations equal to each other and proceeds to $x^3 + x^2 - 10x + 8 = 0$ Divides by $(x - 1)$ to form a quadratic factor. Allow any suitable algebraic method idivision or inspection. Correct quadratic factor $(x^2 + 2x - 8)$ For factorising of their quadratic factor. Achieves $x= 2$ Coordinates of $B = (2, 8)$	12 marks)

Question 8 notes continued		
M1:	For using the limits "2" and 1 in their integrated expression. If separate areas have been attempted, "2" and 1 must be used in both integrated expressions.	
A1:	For $\frac{11}{12}$ or exact equivalent.	

Question	tion Scheme				
9(i)	Way 1	Way 2	M1		
	Divides by $\cos 3\theta$ to give	Or Squares both sides, uses $220 \pm \sin^2 20$, $1 \pm \sin^2 20$			
	$\tan 3\theta = \sqrt{3} \text{ so} \Rightarrow (3\theta) = \frac{\pi}{3}$	$\cos^2 3\theta + \sin^2 3\theta = 1$, obtains			
		$\cos 3\theta = \pm \frac{1}{2} \text{ or } \sin 3\theta = \pm \frac{\sqrt{3}}{2}$			
		so $(3\theta) = \frac{\pi}{3}$			
	Adds π or 2π to previous value of an	gle(to give $\frac{4\pi}{3}$ or $\frac{7\pi}{3}$)	M1		
	So $\theta = \frac{\pi}{9}$,	$\frac{4\pi}{9}$, $\frac{7\pi}{9}$ (all three, no extra in range)	Al		
			(3)		
(ii)(a)	$4(1 - \cos^2 x) + \cos x = 4 - k$	Applies $\sin^2 x = 1 - \cos^2 x$	M1		
	Attempts to solve $4\cos^2 x - \cos x - k$	$x = 0$, to give $\cos x =$	dM1		
	$\cos x = \frac{1 \pm \sqrt{1 + 16k}}{8} \qquad \text{or} \qquad \cos x = \frac{1 \pm \sqrt{1 + 16k}}{8}$	$x = \frac{1}{8} \pm \sqrt{\frac{1}{64} + \frac{k}{4}}$	A1		
	or other correct equivalent				
			(3)		
(b)	$\cos x = \frac{1 \pm \sqrt{49}}{8} = 1$ and $-\frac{3}{4}$ (see the note below if errors are made)				
	Obtains two solutions from 0, 139, 221				
	(0 or 2.42 or 3.86 in radians)				
	x = 0 and 139 and 221 (allow awrt 139 and 221) must be in degrees				
			(3)		
			(9 mark		
Notes:					
i)					
M1: Obtai	$\operatorname{ns}\frac{\pi}{3}$. Allow $x = \frac{\pi}{3}$ or even $\theta = \frac{\pi}{3}$. New	ed not see working here. May be implied	l by		
)		$\theta = 0.349$ as decimals or $(3\theta) = 60$ or θ	2 = 20 as		
degre	es for this mark). Do not allow $\tan 3\theta$	$=-\sqrt{3}$ nor $\tan 3\theta = \pm \frac{1}{\sqrt{3}}$			
	ing π or 2π to a previous value however obtained. It is not dependent on the previous				
mark.	(May be implied by final answer of e	$\theta = \frac{4\pi}{9}$ or $\frac{7\pi}{9}$). This mark may also be	e given fo		
	ers as decimals [4.19 or 7.33], or degre				

Question 9 notes *continued*

A1:	Need all three correct answers in terms of π and no extras in range .
NB:	$\theta = 20^{\circ}, 80^{\circ}, 140^{\circ}$ earns M1M1A0 and 0.349, 1.40 and 2.44 earns M1M1A0
(ii)(a)	
M1:	Applies $\sin^2 x = 1 - \cos^2 x$ (allow even if brackets are missing e.g. $4 \times 1 - \cos^2 x$).
	This must be awarded in (ii) (a) for an expression with k not after $k = 3$ is substituted.
dM1:	Uses formula or completion of square to obtain $\cos x = \exp(x)$
	(Factorisation attempt is M0)
A1:	cao - award for their final simplified expression
(ii)(b)	
M1:	Either attempts to substitute $k = 3$ into their answer to obtain two values for $\cos x$
	Or restarts with $k = 3$ to find two values for $\cos x$ (They cannot earn marks in ii(a) for
	this). In both cases they need to have applied $\sin^2 x = 1 - \cos^2 x$ (brackets may be missing)
	and correct method for solving their quadratic (usual rules – see notes) The values for
	$\cos x \max be > 1 \text{ or } < -1.$
dM1:	Obtains two correct values for <i>x</i>
A1:	Obtains all three correct values in degrees (allow awrt 139 and 221) including 0. Ignore excess answers outside range (including 360 degrees) Lose this mark for excess answers in the range or radian answers.